Основной постулат молекулярной биологии. Центральная догма молекулярной биологии

Эта гипотеза получила успешное развитие во второй половине XX века. Теперь нам понятно, как информация о химических реакциях в клетках передается из поколения в поколение и реализуется для обеспечения жизнедеятельности клетки. Вся информация в клетке хранится в молекуле ДНК (дезоксирибонуклеиновая кислота) - знаменитой двойной спирали, или «скрученной лестницы». Важная рабочая информация хранится на перекладинах этой лестницы, каждая их которых состоит из двух молекул азотистых оснований (см. Кислоты и основания). Эти основания - аденин, гуанин, цитозин и тимин - обычно обозначают буквами А, Г, Ц и Т. Считывая информацию по одной цепи ДНК, вы получите последовательность оснований. Представьте себе эту последовательность как сообщение, написанное с помощью алфавита, в котором всего четыре буквы. Именно это сообщение и определяет поток химических реакций в клетке и, следовательно, особенности организма.

Гены, открытые Грегором Менделем (см. Законы Менделя) - на самом деле не что иное как последовательности пар оснований на молекуле ДНК. А геном человека - совокупность всех его ДНК - содержит приблизительно 30 000–50 000 генов (см. Проект «Геном человека»). У наиболее развитых организмов, в том числе и человека, гены часто бывают разделены фрагментами «бессмысленной», некодирующей ДНК, а у более простых организмов последовательность генов обычно непрерывна. В любом случае, клетка знает, как прочитать содержащуюся в генах информацию. У человека и других высокоразвитых организмов ДНК обвернута вокруг молекулярного остова, вместе с которым она образует хромосому . Вся ДНК человека помещается в 46 хромосомах.

Точно так же, как информацию с жесткого диска, хранящуюся в канцелярии завода, необходимо транслировать на все устройства в цехах завода, информация, хранящаяся в ДНК, должна быть транслирована с помощью клеточного технического обеспечения в химические процессы в «теле» клетки. Основная роль в этой химической трансляции принадлежит молекулам рибонуклеиновой кислоты , РНК. Мысленно разрежьте двуспиральную «лестницу»-ДНК вдоль на две половины, разъединяя «ступеньки», и замените все молекулы тимина (Т) на сходные с ними молекулы урацила (У) - и вы получите молекулу РНК. Когда необходимо транслировать какой-либо ген, специальные клеточные молекулы «расплетают» участок ДНК, содержащий этот ген. Теперь молекулы РНК, в огромном количестве плавающие в клеточной жидкости, могут присоединиться к свободным основаниям молекулы ДНК. В этом случае, так же как и в молекуле ДНК, могут образоваться лишь определенные связи. Например, с цитозином (Ц) молекулы ДНК может связаться только гуанин (Г) молекулы РНК. После того как все основания РНК выстроятся вдоль ДНК, специальные ферменты собирают из них полную молекулу РНК. Сообщение, записанное основаниями РНК, так же относится к исходной молекуле ДНК, как негатив к позитиву. В результате этого процесса информация, содержащаяся в гене ДНК, переписывается на РНК.

Этот класс молекул РНК называется матричными , или информационными РНК (мРНК, или иРНК). Поскольку мРНК намного короче, чем вся ДНК в хромосоме, они могут проникать через ядерные поры в цитоплазму клетки. Так мРНК переносят информацию из ядра («руководящего центра») в «тело» клетки.

В «теле» клетки находятся молекулы РНК двух других классов, и они оба играют ключевую роль в окончательной сборке молекулы белка, кодируемого геном. Одни из них - рибосомные РНК , или рРНК. Они входят в состав клеточной структуры под названием рибосома. Рибосому можно сравнить с конвейером, на котором происходит сборка.

Другие находятся в «теле» клетки и называются транспортные РНК , или тРНК. Эти молекулы устроены так: с одной стороны находятся три азотистых основания, а с другой - участок для присоединения аминокислоты (см. Белки). Эти три основания на молекуле тРНК могут связываться с парными основаниями молекулы мРНК. (Существует 64 молекулы тРНК - четыре в третьей степени - и каждая из них может присоединиться только к одному триплету свободных оснований на мРНК.) Таким образом, процесс сборки белка представляет собой присоединение определенной молекулы тРНК, несущей на себе аминокислоту, к молекуле мРНК. В конце концов, все молекулы тРНК присоединятся к мРНК, и по другую сторону тРНК выстроится цепочка аминокислот, расположенных в определенном порядке.

Последовательность аминокислот - это, как известно, первичная структура белка. Другие ферменты завершают сборку, и конечным продуктом оказывается белок, первичная структура которого определена сообщением, записанным на гене молекулы ДНК. Затем этот белок сворачивается, принимая окончательную форму, и может выступать в роли фермента (см. Катализаторы и ферменты), катализирующего одну химическую реакцию в клетке.

Хотя на ДНК различных живых организмов записаны разные сообщения, все они записаны с использованием одного и того же генетического кода - у всех организмов каждому триплету оснований на ДНК соответствуют одна и та же аминокислота в образовавшемся белке. Это сходство всех живых организмов - наиболее весомое доказательство теории эволюции , поскольку оно подразумевает, что человек и другие живые организмы произошли от одного биохимического предка.

Основной фигурой матричных биосинтезов являются нуклеиновые кислоты РНК и ДНК . Они представляют собой полимерные молекулы, в состав которых входят азотистые основания пяти типов, пентозы двух типов и остатки фосфорной кислоты. Азотистые основания в нуклеиновых кислотах могут быть пуриновыми (аденин , гуанин ) и пиримидиновыми (цитозин , урацил (только в РНК), тимин (только в ДНК)). В зависимости от строения углевода выделяют рибонуклеиновые кислоты – содержат рибозу (РНК), и дезоксирибонуклеиновые кислоты – содержат дезоксирибозу (ДНК).

Термин "матричные биосинтезы " подразумевает способность клетки синтезировать полимерные молекулы, таких как нуклеиновые кислоты и белки , на основе шаблона – матрицы . Это обеспечивает точную передачу сложнейшей структуры от уже существующих молекул к новосинтезируемым.

Основной постулат молекулярной биологии

В подавляющем большинстве случаев передача наследственной информации от материнской клетки к дочерней осуществляется при помощи ДНК (репликация ). Для использования генетической информации самой клеткой необходимы РНК, образуемые на матрице ДНК (транскрипция ). Далее РНК непосредственно участвуют на всех этапах синтеза белковых молекул (трансляция ), обеспечивающих структуру и деятельность клетки.

На вышесказанном основана центральная догма молекулярной биологии , согласно которой перенос генетической информации осуществляется только от нуклеиновой кислоты (ДНК и РНК). Получателем информации может быть другая нуклеиновая кислота (ДНК или РНК) и белок.

Весь процесс биосинтеза белка можно представить в виде очень простой схемы, которую необходимо хорошо запомнить (рис. 1). Представление о том, что генетическая информация хранится в клетке в виде молекулы ДНК и реализуется благодаря транскрипции в РНК и последующей трансляции в белок известно как «Центральная догма молекулярной биологии».

ДНК----®РНК-----® белок.

транскрипция трансляция

Как видно, функционирование (экспрессия) генов от ДНК до белка реализуется благодаря двум глобальным молекулярно-генетическим механизмам: транскрипции и трансляции.

Итак, генная информация у всех клеток закодирована в виде последовательности нуклеотидов в ДНК. Первый этап реализации этой информации состоит в образовании РНК по подобию ДНК, который называется транскрипцией.

I этап биосинтеза белка – транскрипция.

Транскрипция начинается с обнаружения особого участка гена в молекуле ДНК, который указывает место начала транскрипции - промотора (рис. 2) с помощью специального фермента РНК-полимеразы. После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи расходятся и на одной из них фермент осуществляет синтез м-РНК. Сборка рибонуклеотидов в цепь происходит с соблюдением правила комплементарности нуклеотидов. В связи с тем, что РНК-полимераза способна собирать полинуклеотид только в одном направлении, а именно от 5’ к 3’-концу, матрицей может служить только та цепь ДНК, которая обращена к ферменту своим 3’-концом. Такую цепь называют матричной или антисмысловой (рис.2). Другая, антипараллельная цепь ДНК, называется кодогенной или смысловой, т.к. последовательность нуклеотидов этой цепи полностью соответствует последовательности РНК и читается в том-же направлении, т.е. от 5’ к 3’-концу. Поэтому генетический код иногда пишут по молекуле РНК, иногда – по кодогенной ДНК.

Продвигаясь вдоль цепи ДНК, РНК-полимераза осуществляет последовательное точное переписывание информации до тех пор, пока она не встречает на своем пути STOP-кодон-терминатор транскрипции. У человека три стоп-кодона – TAG, TGA, ТAA (или UAG, UGA, UAA).

П этап биосинтеза белка -трансляция .

Трансляция включает 3 фазы: инициация, элонгация и терминация.

1 - Инициация - фаза начала синтеза полипептида.

1) Происходит объединение находящихся порознь в цитоплазме субчастиц рибосомы (большой и малой). Формируется рибосома, в составе которой различают пептидильный и аминоацильный центры.

2) Происходит присоединение к рибосоме первой аминоацил т-РНК.

Рассмотрим, как же проходят в клетке эти процессы.

1) В молекуле любой мРНК вблизи 5’-конца имеется участок, комплементарный последовательности нуклеотидов рРНК малой субчастицы рибосомы. Рядом с этим участком расположен стартовый кодон АУГ, кодирующий аминокислоту - метионин. Малая субчастица рибосомы соединяется с мРНК. Затем происходит объединение малой субчастицы с большой субчастицей, формируется рибосома. В рибосоме образуются два важных участка – пептидильный центр - П-участок и аминоацильный центр – А-участок. К концу фазы инициации П-участок занят аминоацил т-РНК, связанной со стартовой аминокислотой - метионином, а А-участок готов принять следующий за стартовым кодон.

2) В рибосомы транспортируются молекулы тРНК (см. таблицу, рис. 6). Молекулы тРНК состоят из 75-95 нуклеотидов и по форме напоминают лист клена (рис. 7). В своем составе они имеют два активных центра:

1) акцепторный конец, к которому присоединяется транспортируемая аминокислота путем ковалентной связи с затратой энергии 1 АТФ. Формируется аминоацил т-РНК.

2) антикодоновая петля, комплементарная кодону мРНК.

2-я фаза элонгация - удлиннение полипептида (рис. 6, таблица) .

Внутри большой субчастицы рибосомы одновременно находятся около 30 нуклеотидов мРНК и только 2 информативных триплета-кодона: один - в аминоацильном А-участке, другой - в пептидильном П-участке. Молекула тРНК с аминокислотой вначале подходит к А-центру рибосомы. В том случае, если антикодон т-РНК комплементарен кодону мРНК, происходит временное присоединение аминоацил-тРНК к кодону мРНК. После этого рибосома передвигается на 1 кодон по мРНК, а тРНК с аминокислотой перемещается в П-участок. К освободившемуся А-участку приходит новая аминоацил-тРНК с аминокислотой и вновь останавливается там в том случае, если антикодон тРНК комплементарен кодону м-РНК. Между аминокислотой и полипептидом образуется пептидная связь и одновременно разрушается связь между аминокислотой и ее тРНК, а также между тРНК и мРНК. Освободившаяся от аминокислоты тРНК выходит из рибосомы в цитоплазму. Она готова соединиться со следующей аминокислотой. Рибосома снова перемещается на 1 триплет.

Синтез белка

1. Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

2. Процессинг (только у эукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а так же присоединение управляющих участков.

3. Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.

4. Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.

5. Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

6. Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов (например, гема), соединение нескольких полипептидов в четвертичную структуру.

http://biokhimija.ru/lekcii-po-biohimii/21-matrichnye-biosintezy/95-transljacija.html

Существуют три процесса молекулярной биологии

Основной фигурой матричных биосинтезов являются нуклеиновые кислоты РНК и ДНК. Они представляют собой полимерные молекулы, в состав которых входят азотистые основания пяти типов, пентозы двух типов и остатки фосфорной кислоты. Азотистые основания в нуклеиновых кислотах могут быть пуриновыми (аденин , гуанин ) и пиримидиновыми (цитозин ,урацил (только в РНК), тимин (только в ДНК)). В зависимости от строения углевода выделяютрибонуклеиновые кислоты – содержат рибозу (РНК), и дезоксирибонуклеиновые кислоты – содержат дезоксирибозу (ДНК).

Термин "матричные биосинтезы " подразумевает способность клетки синтезировать полимерные молекулы, таких как нуклеиновые кислоты и белки , на основе шаблона –матрицы . Это обеспечивает точную передачу сложнейшей структуры от уже существующих молекул к новосинтезируемым.

Основной постулат молекулярной биологии

В подавляющем большинстве случаев передача наследственной информации от материнской клетки к дочерней осуществляется при помощи ДНК (репликация ). Для использования генетической информации самой клеткой необходимы РНК, образуемые на матрице ДНК (транскрипция ). Далее РНК непосредственно участвуют на всех этапах синтеза белковых молекул (трансляция ), обеспечивающих структуру и деятельность клетки.

Когда нас в университете надменные биохимики спрашивали, с чего это мы считаем молекулярную биологию наукой, в то время, как это всего-лишь отрасль биохимии, я даже не нашлась что сказать. Потом, вооружившись понятиями из методологии науки, все-таки определила, что наука должна иметь «Объект» и «Методы», отличные от других наук. В это смысле, объект молекулярной биологии — это всего два типа молекул, оба биологические полимеры (то есть это цепочки, которые состоят из мономеров).

Первый тип молекул это нуклеиновые кислоты : ДНК и РНК. Мономеры ДНК это нуклеотиды и их всего четыре: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Мономеры РНК почти те же, за исключением того, что вместо тимина используется урацил (У).
Второй тип молекул это белки . Мономер белка — аминокислота. Их есть всего 20 разных.

(Кроме четырех основных нуклеотидов и 20 аминокислот в природе существуют еще различные вариации, но это мы пока не рассматриваем и для понимания догмы это не важно).

Про перенос информации поподробнее, ибо это и есть Основная Догма, которую впервые озвучил Фрэнсис Крик в 1970 году в журнале Nature:» The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred back from protein to either protein or nucleic acid.» Выглядела тогда эта догма вот так: информация переносится в направлении ДНК—>РНК—>белок .

С тех пор все изменилось и обросло подробностями, которые если не опрокинули Догму, то существенно ее поправили и дополнили. Но все по-порядку. То есть направление передачи ДНК—>РНК—>белок никто не отменил и это основной поток передачи информации в живой клетки. И сначала про него.

ДНК это двухцепочечный полимер, находится в клеточном ядре (есть еще не только в ядре, но и в митохондрии например) и способно удваиваться. То есть это передача наследственной информации от родителей к потомкам. Процесс удваивания ДНК называется репликация . Репликацию осуществляет комплекс энзимов, который раскручивает полимер, а другой энзимный комплекс синтезирует копию ДНК из отдельных нуклеотидов (тех, которых четыре, и которые А, Т, Г и Ц) по принципу комплементарности (не буду останавливатся на принципе, надеюсь это даже со школы забыть сложно. Скажу только, что для Т комплементарен А, а для Г, соответственно Ц, причем пара ГЦ образует более сильную химическую связь). Напомню, это перенос ДНК—>ДНК (репликация).

Помимо репликации, на ДНК может происходить синтез матричной РНК (мРНК ). Называется этот процесс транскрипция. Происходит это там же в ядре. мРНК синтезируется на генных участках генома (да, есть еще другие). Другими словами, мРНК это работающий ген. мРНК одноцепочечная.
Транскрипцию осуществляет энзимный комплекс транскрипционных факторов, которые определяют, какой ген сейчас надо «включить» и насинтезировать из него мРНК, и энзимный комплекс РНК-полимеразы, которая как-раз и синтезирует на ДНК РНКу, по тому же самом принципу комплементарности (только не забываем, что вместо тимидина встраивается урацил). Напомню, это перенос ДНК—>РНК (транскрипция).

Насинтезировання мРНК из ядра переносится в цитозоль (содержимое клетки). Там она модифицируется, проходит так называемый процессинг, из нее лишнее вырезается (интроны), надевается шапочка и пришивается длинный хвост из полиаденина. После этого мРНК готова для того, чтобы с нее считали информацию и насинтезировали белок , согласно коду. Это процесс называется трансляция . Для этого она встречается с большой машиной, которая называется рибосома и которая состоит из большого количества запчастей, в основном это белки, структурные и регуляторные, есть также РНК, но вы не путайтесь, это химически РНК, а структурно это кирпич). Рибосома нанизывается на мРНК и включает процесс трансляции. По очереди прочитываются по три нуклеотида (триплет), каждому триплету соответствует одна аминокислота (которых всего 20), правильную аминокислоту подносят маленькие транспортные молекулы (тоже, кстати, РНК, но вы постарайтесь не путаться, это химически РНК, а функционально это машинка такая). В общем это так выглядит, рибосома едет по мРНК, считывает информацию, а с другой стороны у нее вылазит белок, который затем приводится в порядок, то есть скручивается в клубок. Напомню, это перенос РНК—>белок (трансляция).

Остальной перенос информации от РНК на ДНК, от РНК на РНК, от ДНК на белок, а также интересный случай перенсения информации из белка на белок и как на это смотрит Догма, мы рассмотрим с следующей главе. А на завершение тест по материалу:

I.Трансляция это:
1. что-то из радио и телевидения?
2. процесс считывания информации с мРНК рибосомой и синтез белка.
3. я все еще путаю транскрипцию и трансляцию.

II.Молекулярные биологи это:
1. недоученные биохимики.
2. ученые, работающие с двумя типами биологических полимеров.
3. согласен с определением по Юзу Алешковскому .

III.Рибосома это:
1. такая рыба
2. путаю с хромосомой
3. молекулярная машина, с помощью которой происходит процесс трансляции.

IV.Нуклеотидов в природе:
1. 20
2. 4 в ДНК плюс 4 в РНК. Вместе получается 5.
3. 22+X(Y)